Journal of Organometallic Chemistry, 137 (1977) 101-111
© Elsevier Sequoia S.A., Lausanne -- Printed in The Netherlands

THE CRYSTAI STRUCTURE OF N-SODIOHEKAMETHYLDISIIAZANE, $\mathrm{Na}\left[\mathrm{N}\left\{\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]$

RAINER GRÜNING and JERRY L. ATWOOD
Department of Chemistry, University of Alabama, University,
Alabama 35486 (U.S.A.)
(Received December 15th; 1976)

Summary

The crysial structure of $N a\left[N\left[S i\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]$ has been determined from single-crystal x-ray diffraction data collected by counter methods. N-sodiohexamethyidisilazane crystallizes in the monoclinic space group $P 21 / n$ with unit cell parameters $a=9.426(3)$, $\underline{b}=6.921(3), c=17.974(5) A, \beta=93.83(2)^{\circ}$, and $\rho_{c a l c}=1.04 \mathrm{~g} \mathrm{~cm}^{-3}$. for $2=4$ formula units. Least-squares refinement gave a final conventional R value of 0.034 for 1244 independent observed reflections. In the solid state the compound exists in a polymeric arrangement with an average Na-N distance of $2.355(4)$. The methyl group are configured such that the angle of rotation of the trimethylsilyl moiety about the $S i-N$ bond is 30° from the eclipsed position. The Si-N bond length is $1.690(5) \AA$, and the $\operatorname{Si}-N-S i$ bond angle is $125.6(1)^{\circ}$.

Introauction

Since the initial preparation of the alkali metal silazanes by Wannagat ${ }^{l}$ and coworkers in 1959, there has been a high level of interest in the structure and reactivity of these compounds. The reaction of transition metal chlorides with $\mathrm{M}\left[\mathrm{N}\left\{\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}\right.$ \} $]$ ($M=$ alkali metal) and related compounds has led to a series of
low coordination number transition metal complexes. 2 The structural features of the pure three-coordinate species $\mathrm{M}^{\prime}\left[\mathrm{N}\left\{\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]\left(\mathrm{M}^{\prime}=\mathrm{Fe}^{3} \mathrm{SC}, 4, \mathrm{Eu}^{4}\right)$, and the solvated complexes $\operatorname{Cr}\left[\mathrm{N}\left\{\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]_{2} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}, 5 \operatorname{Co}\left[\mathrm{~N}\left\{\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]_{2} \cdot \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}, 6$ and Ni[N\{Si $\left.\left.\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right] \cdot 2 P\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}{ }^{6}$ have been obtained from single crystal X-ray studies.

The properties of the alkali metal derivatives themselves have also been the subject of numerous investigations. N-iithioand N-sodiohexamethyldisilazane have properties normally associated with covalent substances: they are readily soluble in hydrocarbon solutions (in which they exist as dimers), and they exhibit no elecirical conductivity in solution or in the melt. 1 The potassium, rubidium, and cesium compounds, on the other heind, ere insoluble in hydrocarbons, and behave as ionic substances. $\quad \mathrm{X}$ ray crystal structures have been obtained on Li[N\{Si($\left.\left.\left.\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]^{7}$ and K $\left[\mathrm{N}\left\{\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right] \cdot 2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}, 8$ and have revealed surprising results. The former was found to be trimeric in the solid state, while the latter exhibits a much larger Si-N-Si bond angle than expectea.

The crystal structure of Na[N[Si(CH3) $\left.\left.{ }_{3}\right\}_{2}\right]$ was of interest to our group for two primary reasons. First, the question of the degree of association in solution versus the solid state raised by the lithium structure was unresolved. Second, the relation of the structure and solution behavior of $M\left[N\left[S i\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]$ to that of $\operatorname{M}\left[X\left\{A l\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right](X=$ halide or pseudohalide) 9 has not been explored.

Experimental

N-sodiohexamethyldisilazane was recrystallized under a nitrogen atmosphere from mesitylene, and the colorless, airsensitive parallelepipeds were sealed in thin-walled glass capillaries. Final lateice parameters as determined from a leastsquares refinement of the angular settings of 15 reflections $\left(2 \theta>20^{\circ}\right)$ accurately centered on an Enraf-Nonius CAD-4 diffractometer are given in Table 1.

Table 1. Crystal Data.

Mol: formula: $\mathrm{Na}\left[\mathrm{N}\left\{\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]$
Mol. wt.: 183.38
Linear abs. coeff. $\mu=2.84 \mathrm{~cm}^{-1}$
Calc. density $=1.049 \mathrm{~cm}^{-3}$
Max. crysial dimensions: $0.30 \times 0.30 \times 0.52 \mathrm{~mm}$
Space group: monoclinic, $\mathrm{P} 21 / \mathrm{n}$
Molecules/unit cell: 4
Cell constantsa: $a=9.426(3) \AA$
$b=6.921(3)$
$\mathrm{c}=17.974$ (5)
$B=93.83(2)^{\circ}$
Cell volume: $1170.0 \mathrm{~A}^{3}$
$a_{\text {MoK } \alpha}$ radiation, $\lambda=0.71069 \AA$. Ambient temperature of $23 \pm 1^{\circ} \mathrm{C}$.

Data were collected on the diffractometer with graphite crystal monochromated molybdenum radiation. The diffracted intensities were collected by the $\omega-2 \theta$ scan technique with a takeoff angle of 3.5°. The scan rate was variable and was determined by a fast 20° min ${ }^{-1}$ prescan. Calculated speeds for the slow scan (based on the net intensity gathered in the prescan) ranged from 7 to $0.4^{\circ} \mathrm{min}^{-1}$. Other diffractometer parameters and the method of estimation of standard deviations have been previousiy described. 10 As a check on the stability of the instrument and crystal, two reflections were measured after every 40 reflections; no significant variation was noted.

One independent quadrant of data was measured out to $2 \theta=50^{\circ}$;
a slow scan was performed on a total of 1244 unique reflections. Since these data were scanned at a speed which would yield a net count of 4000 , the calculated standard deviations were all very nearly equal. No reflection was subjected to a slow scan unless a net count of 30 was obtained in the prescan. Based on these
considerations, the data set of 1244 reflections (used in the subsequent structure determination and refinement) was considered observed, and consisted in the main of those for which $1>30(T)$. The intensities were corrected for Lorentz and polarization effects, but not for aiosorption ($\mu=2.84 \mathrm{~cm}^{-1}$).

The function $w\left(\left|F_{O}\right|-\left|F_{C}\right|\right)^{2}$ was minimized. 11 No corrections were macie for extinction. Neutral atom scattering factors were taken from the compilations of Cromer and waberl2 for Na , si , N , and C; those for H were from "International Tables for X-ray crystallography."13

Structure Solution and Refinement

The structure was solved by the straight-forward application of the direct methods program MULTAN. 14 Several cycles of leastsquares refinement of the positional and isotropic thermal parameters of the ten nonhydrogen atoms afforded a reliability factor of $R_{1}=\Sigma\left(\left|F_{o}\right|-\left|F_{C}\right|\right) / \Sigma\left|F_{0}\right|=0.114 . \quad$ Conversion to anisotropic thermal parameters and further refinement gave $R_{1}=0.068$. The positions of the eighteen hydrogen atoms were determinea from a difference Fourier map, and more cycles of refinement led to final values of $R_{1}=0.035$ and $\left.R_{2}=\left[\Sigma W\left|F_{0}\right|-\left|F_{C}\right|\right)^{2} / \Sigma\left|F_{0}\right|\right]$ 0.034. The weighting scheme was based on unit woights, and unobscrvci reflections were not included. The largest paraneter shifts in the final cycle of refinement were less than 0.01 of their estimated standard deviations. The estimated standard deviation of an observation of unit weight was 0.76 . The final values of the positional and thermal parameters are given in Table 2.*

[^0]Table 2. Final Fractional Coordinates and Thermal Paraneters ${ }^{\mathbf{a}}$ for $\mathrm{Na}\left[\mathrm{N}\left\{\mathrm{SI}_{1}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]$.

Atom	x / a	y / b	z/c	β_{11}	B22	B33	$\beta 12$	${ }^{1} 13$	β_{23}
Na	0.3037 (2)	0.9698 (2)	0.2695 (1)	0.0194 (2)	$0.0372(4)$	0.0065 (1)	0.0074 (3)	-0.0013(1)	-0.0074 (1)
S.11	0.0204 (1)	0.1849 (1)	0.3336 (1)	$0.0107(1)$	$0.0237(2)$	0.0038 (1)	-0.0008 (1)	0.0009 (1)	0.0005 (1)
Si2	$0.3132(1)$	0.2979 (1)	0.3952 (1)	0.0122 (1)	0.0229(2)	0.0030 (1)	0.0008 (1)	0.0001 (1)	-0.0004(1)
N	0.1944 (2)	0.2349 (3)	0.3250(1)	$0.0108(3)$	0.0219(6)	0.0033(1)	0.0001 (3)	$0.0006(1)$	0.0001 (2)
C1	-0.0123(4)	-0.0781(6)	0.3472 (2)	0.0210 (6)	$0.0348(12)$	0.0069 (2)	-0.0100(7)	-0.0003(3)	0.0031 (4)
C2	-0.0897(4)	$0.2512(7)$	0.2473 (2)	$0.0124(5)$	$0.0572(16)$	$0.0074(2)$	-0.0020(7)	-0.0006(2)	0.0076 (5)
C3	-0.0645(4)	0.3119 (8)	$0.4109(3)$	0.0171 (6)	$0.0606(18)$	0.0080(2)	0.0005 (9)	0.0045 (3)	-0.0049 (6)
C4	0.2866 (5)	0.1928 (8)	$0.4882(2)$	0.0244 (7)	$0.0667(19)$	0.0042(2)	-0.0088(10)	-0,0008(3)	0.0038 (5)
c5	0.4957 (4)	0.2222 (7)	0.3730 (2)	0.0141 (5)	$0.0518(14)$	0.0050(2)	0.0049(7)	-0.0015 (2)	-0.0033 (4)
C6	0.3204 (4)	0.5655 (6)	0.4094 (2)	0.0205 (6)	$0.0293(10)$	0.0076(2)	-0,0017(7)	-0.0018(3)	-0.0051(4)
H1(C1)	0.030	-0.120	0.393	,					
H2(C1)	0.007	-0.129	0.304						
113 (Cl)	-0.115	-0.110	0.347		* **..				
H4(C2)	-0.089	0.382	0.248						
H5(C2)	-0.051	0.219	0.204						
116 (c2)	-0.173	0.213	0.252						
177 (C3)	-0.171	0.302	0.409						
H8(C3)	-0.022	0.248	0.454						
H9(C3)	-0.059	0.434	0.399						
H10(C4)	0.270	0.082	0.485						
H11(C4)	0.192	0.209	0.508						
H12(C4)	0.362	0.216	0.521						
H13(C5)	0.556	0.266	0.404						
H14(C5)	0.516	0.263	0.324						
1115(C5)	0.499	0.091	0.379						
H16(C6)	0.391	0.605	0.445						
H17 (C6)	0.358	0.621	0.363						
H18 (C6)	0.234	0.615	0.421						

[^1]$b_{\text {Hydrogen atom coordinates were located on a difference Fourier map and were not refined. The temperature factors were }}$ not refined, but were talen as $5,0 \AA^{2}$.

Discussion

The structure of the N-sodiohexamethyldisilazane anion and the atom numbering scheme are presented in Figure 1. The compound exists as an infinite chain of cations and anions in the solid state with the parameter given in $\underset{\sim}{I}$. This is in contrast to the reported dimeric behavior in solution. I

I

Figure 1. Structure and Atom Numbering Scheme of the Anion in N -soaiohexamethyldisilazane

An important structural aspect of ions or molecules of this type concerns the configuration of the methyl groups. One can envision two possible extremes: eclipsed (C2v) as in II or staggered $\left(C_{s}\right)$ as in III. The crystal structure of $K\left[A I_{2}\left(\mathrm{CH}_{3}\right){ }_{6} \mathrm{~N}_{3}\right]$

II

III
revealed that there are two different anions in the asymmetric unit, one eclipsed and one staggered. 15 Even though many hexamethyldisilazane structures have been reported, 3-6 data on the configuration of the $N\left[S i\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}$ - ion has not been routinely included. The question was considered by clark and Haaland ${ }^{16}$ in connection with Be[N\{Si $\left.\left.\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]$. On the basis of electron di戸̄raction data they obtained a value of 7.2(3.5) ${ }^{\circ}$ for the angle of rotation of the trimethylsilyl group (from the position when one Si-C bond is eclipsed with the Be-N bond; an equivalent frame of reference would be the other $\operatorname{si-N}$ bond). In the present study, an angle of rotation of 30° is observed. This presumably results from the need to minimize the nonbonded metinyl-methyl repulsion. With the 30° rotation, the closesi C (methyl)-C(methyl) approach is $3.60 \AA$ (IV).

The anions, $N\left\{S i\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}^{-}$(V) and $\left[\mathrm{N}_{3}\left[\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}\right]^{-}$(VI), possess an overall structural similarity, but differ in one

$\stackrel{V}{\sim}$

VI
aspect. The Al-N bond length ${ }^{15}$ of $2.02 \AA$ compares reasonably well with the $i .90 \AA$ value estimated from a sum of covalent radii. 17 However, the Si-N length, $1.690(5) \AA(T a b l e ~ 3)$, is much shorter than the $1.87 \AA$ prediction. Steric factors could reasonably be invoked to explain the elongation of the Al-N bond length, but the Si-N bond length is in fact contracted. As has been pointed out previously, ${ }^{1}$ this is a manifestation of the presence of $d_{\pi}-p_{\pi}$ bonding between the silicon and nitrogen atoms. The result of the shortened metal-nitrogen bond length is a Si...Si separation of 3.01 A versus an Al...Al distance of $3.62 \AA .15$

Within the hexamethyldisilazane ion there are two parameters of importance: the Si-N bond length and the Si-N-si bond angle. A tabulation of these values is presented as Table 4. Although the $\mathrm{Si}-\mathrm{N}$ bond lengths mostly fall within the range $1.69 \rightarrow 1.73 \mathrm{~A}^{\circ}$, the 1.64 (1) ${ }^{\circ}$ value found in $\mathrm{K}\left[\mathrm{N}\left\{\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right] \cdot 2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ is significantly shortened, 18 and may reflect the fact that the cation and anion interact in a predominantly ionic fashion. The greater degree of covalency in the $\mathrm{Na}^{+} \ldots-\mathrm{N}\left\{\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}$ bond is reflected in the $1.690(5) \AA \mathrm{N}-\mathrm{Si}$ bond length. This criterion has been used to ascribe a greater degree of ionicity in Eu[N\{Si ($\left.\left.\left.\mathrm{CH}_{3}\right)_{3}\right)_{2}\right]_{3}$ as compared to $\mathrm{Sc}\left[\mathrm{N}\left\{\mathrm{Si}\left(\mathrm{CH}_{3}\right) 3_{3}{ }_{2}\right]_{3} \cdot{ }^{4}\right.$

The interpretation of the Si-N-Si bond angle is not so straightforward. It may be argued that an increase sin the
 increase in the p-character of the $M-\mathbb{N}$ bond. This in turn must

Table 3. Interatomic Distances (\AA) and Angles (${ }^{\circ}$) for $\mathrm{Na}\left[\mathrm{N}\left\{\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]$.

Bond Distances

$N-S i 1$	$1.694(2)$	$N-S i 2$	$1.687(2)$
Sil-Cl	$1.865(4)$	Si2-C4	$1.856(4)$
Sil-C2	$1.865(4)$	Si2-C5	$1.868(4)$
Sil-C3	$1.869(4)$	Si2-C6	$1.870(4)$
$\mathrm{NaIa}-\mathrm{N}$	$2.352(2)$	Na	

Bond Angles

N -Sil-Cl	112.4 (2)	N -Si2-C4	116.7(2)
N -Sil-C2	111.2(1)	N -Si2-C5	110.0 (1)
N -Sil-C3	115.9 (2)	N -Si2-C6	I12.0(2)
Cl-Sil-C2	105.1(2)	C4-Si2-C5	105.4(2)
Cl-Sil-C3	106.2(2)	c4-Si2-c6	$105.7(2)$
c2-Sil-C3	105.1(2)	C5-Si2-C6	106.4 (2)
Sil-N-Si2	125.6(1)	$\begin{aligned} & \mathrm{N} \rightarrow \mathrm{Na}-\mathrm{N}^{I I I} \\ & \mathrm{Na}-\mathrm{N}-\mathrm{Na} I \mathrm{I} \end{aligned}$	$\begin{aligned} & 150.2(1) \\ & 102.0(1) \end{aligned}$

$\mathrm{a}_{\text {Na }}{ }^{1}$ is related to Na by ($x, y-1, z$); Nall is related to Na by ($1_{2}-x, y-x_{2}, b_{2}-z$); Nill is related to N by $(x, 1+y, z)$.

Table 4. Comparison of Selected Structural Parameters for the $\left[\mathrm{N}\left\{\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]^{\text {- }}$ Ion.

Compound	$\begin{gathered} \text { Si-N } \\ \text { Distance } \\ \text { (A) } \end{gathered}$	$\begin{gathered} \text { Si-C } \\ \text { Distyance } \\ \text { (A) } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{Si}-\mathrm{N}-\mathrm{Si} \\ & \text { Angle }\left({ }^{\circ}\right) \end{aligned}$	Reference
$\mathrm{K}\left[\mathrm{N}\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right] \cdot 2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	1.64(1)	1.90 (3)	136.2(1.2)	8
$\mathrm{Eu}\left[\mathrm{N}\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]_{3}$	1.68	-	129.4	4
$\mathrm{Na}\left[\mathrm{N}\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]$	1.690 (5)	1.866 (5)	125.6(1)	-
$\mathrm{Cr}\left[\mathrm{N}\left\{\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]_{2} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$	1.69 (2)	-	-	5
$\mathrm{Ni}\left[\mathrm{N}\left\{\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right] \cdot 2 \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$	1.70 (1)	-	126(1)	6
$\mathrm{Co}\left[\mathrm{N}\left\{\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]_{2} \cdot \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$	1.706 (9)	-	125 (1)	6
$\operatorname{Cr}\left[\mathrm{N}\left\{\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]_{3} \cdot \mathrm{NO}$	1.72 (3)	-	-	5
Be $\left[\mathrm{N}\left\{\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]_{2}$	$1.722(7)$	$1.876(4)$	129.2(7)	16
$\mathrm{Sc}\left[\mathrm{N}\left\{\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]_{3}$	1.73	-	121	4
$\mathrm{Fe}\left[\mathrm{N}\left[\mathrm{SI}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]_{3}$	1.73 (3)	$1.886(12)$	121.2(4)	3
$\mathrm{H}\left[\mathrm{N}\left\{\mathrm{Sif}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]$	1.735 (12)	1.867 (4)	$125.5(1,8)$	a
AII $\left[\mathrm{N}\left\{\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right]_{3}$	$1.75(2)$	1.90 (2)	118.0(1.5)	b

[^2]increase the s-character in the $N-S i$ bonds, and thus, increase the Si-N-Si bond angles. Such is not the case for the compounds given in Table 4: for $M=K$, the largest si-N-Si angle is found. ${ }^{8}$ The effect may well be of only minor significance, since the range of electronegativities of the M groups is not great. The explanation of the large angle for the potassium salt could well lie in a steric effect. A decrease in the $\operatorname{si-N}$ bond length will force the nonbonded methyl groups of the $-\mathrm{Si}^{\left(\mathrm{CH}_{3}\right)} 3$ units closer together. This unfavorable effect could be offset by a change in configuration, an opening of the Si-N-Si bond angle, or a combination of both.

AII bond lengths and angles involving the methyl carion atoms are normal. The $\mathrm{C}-\mathrm{H}$ bond lengths range from 0.78 to $1.01 \AA$, and average $0.92 \AA$. A stereoscopic view of the unit cell packing is given in Figure 2.

Figure 2. Stereoscopic View of the unit cell contents with the Atoms Represented by Their 40% Drobability Ellipsoids for Thermal Motion

Acknowledgment

We are grateful to the National Science Foundation for support of this work under Grant MPs-75-04927.

References

1. U. Wannagat, Pure Appl. Chem., 19 (1969) 329, and references therein.
2. M. F. Lappert, J. B. Pedley, G. J. Sharp, and D. C. Bradiey, J. Chem. Soc. Dalton, (1976) 17.
3. D. C. Bradley, M. B. Fursthouse, and P. F. Rodesiler, Chem. Comm., (1969) 14.
4. J. S. Ghotra, M. B. Hursthouse, ana A. J. Welch, Chem. Comr., (1973) 669.
5. D. C. Bradley, M. B. Hursthouse, C. W. Newing, and A. J. Welch, J. Chem. Soc. Chem. Comm., (1972) 567.
6. D. C. Bradley, M. B. Hursthouse, R. J. Smallwood, and A. J. Welch, J. Chem. Soc. Chem. Comm., (1972) 872.
7. D. Mootz, A. Zinnius, and B. Böticher, Angew. Chem. Int. Ed. . 8, (1969) 378.
8. A. M. Domingos and G. M. Sheldrick, Acta Crystallogr. B30 (1974) 517.
9. J. L. Atwood and J. D. Atwood, Adv. Chem. Ser., 150 (1976) 112.
10. J. I. Atwood and K. D. Smith, J. Amer. Chem. Soc., 95 (1973) 1488 .
11. Crystallographic programs used on a UNIVAC Illo inciude ORFIS (structure factor calculation and least-squares refinement, by W. R. Busing, K. O. Martin, and H. A. Ievy), ORFFE (distances and angles with esd's, by W. R. Busing, K. O. Martin, and H. A. Levy), ORTEP (thermal ellipsoid drawings, by C. K. Johnson), FOURIER (D. J. Hodgsoris version of Dellaca and Robinson's program), and BPL (least-squares planes, by W. E. Hunter).
12. D. T. Cromer and J. T. Waber, Acta Crystallogr., 18 (1965) 104.
13. "International Tables for X-ray Crystallography," Vol. III, Kynoch Press, Birmingham, England, loG2, p. 202.
14. G. Germain, P. Main, and M. M. Woolfson, Acta Crystallogr., A 27 (1971) 368 .
15. J. L. Atwood and $\mathfrak{\text { V. R. Newberry, J. Organometal. Chem. . } 6 5}$ (1974) 145.
16. A. H. Clark and A. Haaland, Acta Chem. Scand. 24 (1970) 3024.
17. L. Pauling, "The Nature of the Chemical Bond," Cornell University press, Ithaca, N. Y., 1960, P. 224.

[^0]: *The table of structure factors is available and readers can obiain it by applying directly to the authors.

[^1]: $a_{\text {Anisotropic }}$ thermal parameters defined by $\exp \left[-\left(\beta_{11} \mathrm{~h}^{2}+\beta_{22} \mathrm{k}^{2}+\beta_{33} \ell^{2}+\beta_{12} \mathrm{hk}+\beta_{13} \mathrm{hl}+\beta_{23}{ }^{\mathrm{k} \ell}\right)\right]$.

[^2]: A. G. Robietie, G. M. Sheldrick, and W. S. Sheldrick, Chem. Comm. (1968) 909.
 \underline{b}_{G}. M. Sheldrick and W. S. Sheldrick, J. Chem. Soc. A, (1969) 2279.

